

More Precision

confocalDT // Confocal chromatic sensor system

Confocal sensors with high precision confocalDT IFS2405

NocielIFS2405-0.3IFS2405-1IFS2405-3Measuring range0.3 mm1 mm3 mmStart of measuring rangeapprox.6 mm10 mm20 mmStart of measuring rangeapprox.6 mm10 mm20 mm $Pesolution$ static.14 nm8 nm15 nm $Pesolution$ dynamic.218 nm38 nm80 nm $Pesolution$ Displacement and distance< $\pm 0.1 \mu$ m< $\pm 0.25 \mu$ m< $\pm 0.75 \mu$ m $Pesolution$ Displacement and distance< $\pm 0.2 \mu$ m< $\pm 0.5 \mu$ m< $\pm 0.75 \mu$ m $Pesolution$ Displacement and distance< $\pm 0.2 \mu$ m< $\pm 1.5 \mu$ m< $\pm 1.5 \mu$ m $PeroteconThickness< \pm 0.2 \mum< \pm 1.5 \mum< \pm 1.5 \mumPeroteconThickness< \pm 0.2 \mum< \pm 1.5 \mum< \pm 1.5 \mumMax. measuring angle 4< \pm 34^{\circ}\pm 30^{\circ}\pm 24^{\circ}Numerical aperture (NA)0.600.550.45Numerical aperture (NA)0.600.55 mm0.45Min. target thickness 50.015 mm0.05 mm0.15 mmTarget materialreflective, diffuse as well as transparent surfaces (e.g. glass)InstallationClamping (mounting adapter see access-true)Installationextension up to 50 m; berture rangeOperation\pm 20^{\circ}\pm 20^{\circ}Shock (DIN EN 60068-2-27)\pm 50^{\circ}Vibration (DIN EN 60068-2-6)2g/20500 Hz in XY axis, 10 oyoles ext$	ons in mm, zale.
Start of measuring rangeapprox.6 mm10 mm20 mmResolutionstatic 104 nm8 nm15 nmMesolutiondynamic 2018 nm38 nm80 nmLinearity 30Displacement and distance $< \pm 0.1 \mu m$ $< \pm 0.25 \mu m$ $< \pm 0.75 \mu m$ Linearity 30Thickness $< \pm 0.2 \mu m$ $< \pm 0.5 \mu m$ $< \pm 1.5 \mu m$ Light spot diameter6 μm 8 μm 9 μm Max. measuring angle 4 $= 4.04 \mu m$ 9 μm Max. measuring angle 4 $= 5.04 m$ $= 4.03 0^{\circ}$ $= 24.03 0^{\circ}$ Numerical aperture (NA)0.600.550.45Min. target thickness 50.015 mm0.05 mm0.15 mmArget material0.015 mm0.05 mm0.15 mmConnectionsettersion up to 50 m; settersion up to 50 m; setter	-3
$\frac{\operatorname{static}^{1}}{\operatorname{dynamic}^{2n}} \frac{\operatorname{4 nm}}{\operatorname{18 nm}} \qquad \operatorname{8 nm} \qquad \operatorname{15 nm}}{\operatorname{8 0 nm}} \\ \frac{\operatorname{Displacement and distance}}{\operatorname{16 nm}} \qquad \operatorname{4 \pm 0.25 \mum} \qquad \operatorname{4 \pm 0.75 \mum}} \\ \frac{\operatorname{Displacement and distance}}{\operatorname{16 nm}} \qquad \operatorname{4 \pm 0.2 \mum} \qquad \operatorname{4 \pm 0.5 \mum} \qquad \operatorname{4 \pm 0.75 \mum}} \\ \frac{\operatorname{16 nm}}{\operatorname{16 nm}} \qquad \operatorname{16 nm} \qquad \operatorname{16 nm}} \\ \frac{\operatorname{16 nm}}{\operatorname{16 nm}} \qquad \operatorname{16 nm} \qquad \operatorname{16 nm} \qquad \operatorname{16 nm}} \\ \frac{\operatorname{16 nm}}{\operatorname{16 nm}} \qquad \operatorname{16 nm} \qquad \operatorname{16 nm} \qquad \operatorname{16 nm}} \\ \frac{\operatorname{16 nm}}{\operatorname{16 nm}} \qquad \operatorname{16 nm} \qquad \operatorname{16 nm} \qquad \operatorname{16 nm}} \\ \frac{\operatorname{16 nm}}{\operatorname{16 nm}} \qquad \operatorname{16 nm} \qquad \operatorname{16 nm} \qquad \operatorname{16 nm}} \\ \frac{\operatorname{16 nm}}{\operatorname{16 nm}} \qquad \operatorname{16 nm} \qquad \operatorname{16 nm} \qquad \operatorname{16 nm}} \\ \frac{\operatorname{16 nm}}{\operatorname{16 nm}} \qquad \operatorname{16 nm} \qquad \operatorname{16 nm} \qquad \operatorname{16 nm} \qquad \operatorname{16 nm}} \\ \frac{\operatorname{16 nm}}{\operatorname{16 nm}} \qquad \operatorname{16 nm} \qquad \operatorname{10 nm} \qquad$	
Resolutiondynamic 318 nm38 nm80 nmLinearity 3Displacement and distance $< \pm 0.1 \mu$ m $< \pm 0.25 \mu$ m $< \pm 0.75 \mu$ mLinearity 3Thickness $< \pm 0.2 \mu$ m $< \pm 0.5 \mu$ m $< \pm 1.5 \mu$ mLight spot diameter 6μ m 8μ m 9μ mMax. measuring angle 4 $\pm 34^{\circ}$ $\pm 30^{\circ}$ $\pm 24^{\circ}$ Numerical aperture (NA)0.600.550.45Min. target thickness 50.015 mm0.05 mm0.15 mmTarget material0.015 mm0.05 mm0.15 mmConnectionglugable optical fiber via FC socket, standard eyth 3 m; extension up to 50 m; extensio	
dynamic all dynamic all18 nm38 nm80 nmLinearity allDisplacement and distance $< \pm 0.1 \mu m$ $< \pm 0.2 \mu m$ $< \pm 0.5 \mu m$ Light spot diameter $6 \mu m$ $8 \mu m$ $9 \mu m$ Max. measuring angle all $\pm 34^{\circ}$ $\pm 30^{\circ}$ $\pm 24^{\circ}$ Numerical aperture (NA) 0.60 0.55 0.45 Min. target thickness all $0.015 mm$ $0.05 mm$ $0.15 mm$ Target material $0.015 mm$ $0.05 mm$ $0.15 mm$ Installation $Clarring radius: static 30 mm; dynamic 4W h 3 m; extension up to 50 m; bendirer static 30 mm; dynamic 4W h 3 m; extension up to 50 m; dynamic 4W h 3 m; dynam$	
Linearity 9 Thickness $< \pm 0.2 \mu$ m $< \pm 0.5 \mu$ m $< < \pm 1.5 \mu$ mLight spot diameter 6μ m 8μ m 9μ mMax. measuring angle $^{4)}$ $\pm 34^{\circ}$ $\pm 30^{\circ}$ $\pm 24^{\circ}$ Numerical aperture (NA) 0.60 0.55 0.45 Min. target thickness $^{5)}$ $0.015 m$ m $0.05 m$ m $0.15 m$ mTarget material $0.015 m$ m $0.05 m$ m $0.15 m$ mTarget material $0.015 m$ m $0.05 m$ m $0.15 m$ mConnection $100 m$ m $0.05 m$ m $0.15 m$ mInstallation $Clamping (mounting adapter see accessive)$ $100 m$ mTemperature rangeStorage $-20 \dots + 70 ^{\circ}C$ Operation $15g / 6 m$ s in XY axis, 1000 shocks each $15g / 6 m$ s in XY axis, 1000 shocks each	
Thickness< ±0.2 µm< ±0.5 µm< < ±1.5 µmLight spot diameter6 µm8 µm9 µmMax. measuring angle 40±34°±30°±24°Numerical aperture (NA)0.600.550.45Min. target thickness 500.015 mm0.05 mm0.15 mmTarget material0.015 mm0.05 mm0.15 mmConnection $pluggable optical fiber via FC socket, standard seg, glass)InstallationClamping (mounting adapter see accessive)Installation-20 \dots +70 °C-20 \dots +70 °C-50 °CShock (DIN EN 60068-2-27)50 °C15g / 6 ms in XY axis, 1000 shocks eaccessive)$	<i>ı</i> m
Max. measuring angle 4 $\pm 34^{\circ}$ $\pm 30^{\circ}$ $\pm 24^{\circ}$ Numerical aperture (NA) 0.60 0.55 0.45 Min. target thickness 5 0.015 mm 0.05 mm 0.15 mm Target material 0.015 mm 0.05 mm 0.15 mm Connection gradies as well as transparent surfaces (-g. glass) gradies at thick on the second sec	m
Numerical aperture (NA)0.600.550.45Min. target thickness 5)0.015 mm0.05 mm0.15 mmTarget material0.015 mm0.05 mm0.15 mmTarget material91000 mm1000 mmConnection1000 mm1000 mm1000 mmInstallation0.000 mm0.000 mm1000 mmTemperature rangeStorage Operation-20 +70 °CShock (DIN EN 60068-2-27)15g / 6 ms in XY axis, 1000 shocks each	
Min. target thickness 5) 0.015 mm 0.05 mm 0.15 mm Target material reflective, diffuse as well as transparent surfaces (e.g. glass) Connection pluggable optical fiber via FC socket, standard length 3 m; extension up to 50 m; bending radius: static 30 mm; dynamic 40 mm Installation Clamping (mounting adapter see accessories) Temperature range Storage Operation +5 +70 °C Shock (DIN EN 60068-2-27) 15g / 6 ms in XY axis, 1000 shocks each	
Target material reflective, diffuse as well as transparent surfaces (e.g. glass) Connection pluggable optical fiber via FC socket, standard length 3 m; extension up to 50 m; bending radius: static 30 mm; dynamic 40 mm Installation Clamping (mounting adapter see accessories) Temperature range Storage Operation -20 +70 °C Shock (DIN EN 60068-2-27) 15g / 6 ms in XY axis, 1000 shocks each	
Connection pluggable optical fiber via FC socket, standard length 3 m; extension up to 50 m; bending radius: static 30 mm; dynamic 40 mm Installation Clamping (mounting adapter see accessories) Temperature range Storage Operation +5 +70 °C Shock (DIN EN 60068-2-27) 15g / 6 ms in XY axis, 1000 shocks each	1
Storage -20 +70 °C Operation +5 +70 °C Shock (DIN EN 60068-2-27) 15g / 6 ms in XY axis, 1000 shocks each	
Storage -20 +70 °C Operation +5 +70 °C Shock (DIN EN 60068-2-27) 15g / 6 ms in XY axis, 1000 shocks each	
Operation +5 +70 °C Shock (DIN EN 60068-2-27) 15g / 6 ms in XY axis, 1000 shocks each	
Shock (DIN EN 60068-2-27) 15g / 6 ms in XY axis, 1000 shocks each	
Protection class (DIN EN 60529) IP64 (front)	
Material Aluminum housing, glass lenses	
Weight ⁶ approx. 140 g approx. 125 g approx. 225 g	5 a

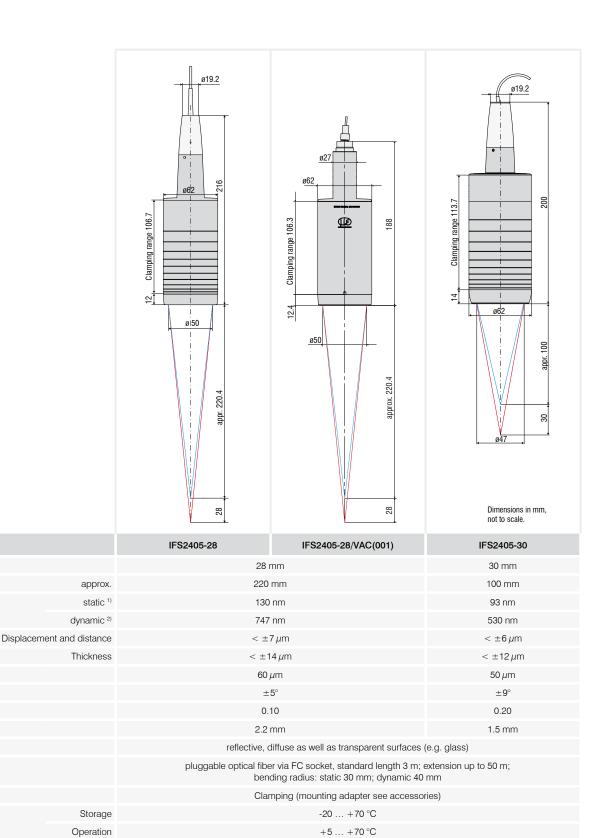
^a RIS noise relates to mid of measuring range on to optical that
 ^b All data at constant ambient temperature (25 ±1 °C) against optical flat; specifications can change when measuring different objects.

⁴⁾ Maximum measuring angle of the sensor that produces a usable signal on reflecting surfaces. The accuracy decreases when approaching the limit values.

⁹ Glass sheet with refractive index n = 1.5 throughout the entire measuring range. In the mid of the measuring range, also thinner layers can be measured.

⁶⁾ Sensor weight without optical fiber

Confocal sensors with high precision confocalDT IFS2405


Robust universal sen for various application Submicron resolution For one-sided thicknown measurements For precise distance measurements Very small light spot Very small light spot	n ess	Camping range 86 90 155 155 155 155 155 155 155 15	d d d d d d d d d d d d d d d d d d d	Dimensions in mm, not to scale.
Model		IFS2405-6	IFS2405/90-6	IFS2405-10
Measuring range		6 mm	6 mm	10 mm
Start of measuring range	approx.	63 mm	41 mm ¹⁾	50 mm
	static ²⁾	34 nm	34 nm	36 nm
Resolution	dynamic 3)	190 nm	190 nm	204 nm
Displace	ement and distance	$<\pm1.5\mu m$	< ±1.5 µm	$<\pm 2\mu m$
Linearity 4)	Thickness	$<\pm3\mu{ m m}$	$<\pm3\mu{ m m}$	$< \pm 4\mu{ m m}$
Light spot diameter		31 <i>µ</i> m	31 <i>µ</i> m	16 <i>µ</i> m
Max. measuring angle 5)		±10°	$\pm 10^{\circ}$	±17°
Numerical aperture (NA)		0.22	0.22	0.30
Min. target thickness 6)		0.3 mm	0.3 mm	0.5 mm
Target material		refle	ctive, diffuse as well as transparent surfaces (e.g. gl	ass)
Connection		pluggable optic	cal fiber via FC socket, standard length 3 m; extension bending radius: static 30 mm; dynamic 40 mm	on up to 50 m;
Installation			Clamping (mounting adapter see accessories)	
Temperature	Storage		-20 +70 °C	
Temperature range	Operation		+5 +70 °C	
Shock (DIN EN 60068-2-27)			15g / 6 ms in XY axis, 1000 shocks each	
Vibration (DIN EN 60068-2-6)			2g / 20 500 Hz in XY axis, 10 cycles each	
Protection class (DIN EN 60529)			IP64 (front)	
			ii o i (ii oiii)	
Material			Aluminum housing, glass lenses	
		approx. 260 g		approx. 500 g

 $^{\rm p}$ Start of measuring range measured from sensor axis $^{\rm 2i}$ Average from 512 values at 1 kHz, in the mid of the measuring range onto optical flat

³⁾ RMS noise relates to mid of measuring range (1 kHz)

⁴ All data at constant ambient temperature (25 ± 1 °C) against optical flat; specifications can change when measuring different objects.
 ⁵ Maximum measuring angle of the sensor that produces a usable signal on reflecting surfaces. The accuracy decreases when approaching the limit values.
 ⁶ Glass sheet with refractive index n = 1.5 throughout the entire measuring range. In the mid of the measuring range, also thinner layers can be measured.

7) Sensor weight without optical fiber

15g / 6 ms in XY axis, 1000 shocks each

2g / 20 ... 500 Hz in XY axis, 10 cycles each

IP40 (vacuum compatible)

Burnished stainless steel housing

¹⁾ Average from 512 values at 1 kHz, in the mid of the measuring range onto optical flat

²⁾ RMS noise relates to mid of measuring range (1 kHz)

³⁾ All data at constant ambient temperature (25 ±1 °C) against optical flat; specifications can change when measuring different objects.

⁴⁾ Maximum measuring angle of the sensor that produces a usable signal on reflecting surfaces. The accuracy decreases when approaching the limit values. ⁵⁾ Glass sheet with refractive index n = 1.5 throughout the entire measuring range. In the mid of the measuring range, also thinner layers can be measured.

IP64 (front)

Aluminum housing, glass lenses

approx. 750 g

⁶⁾ Sensor weight without optical fiber

Model

Resolution

Linearity 3)

Light spot diameter

Max. measuring angle 4)

Numerical aperture (NA)

Min. target thickness 5)

Target material

Connection

Installation

Material

Weight 6)

Temperature range

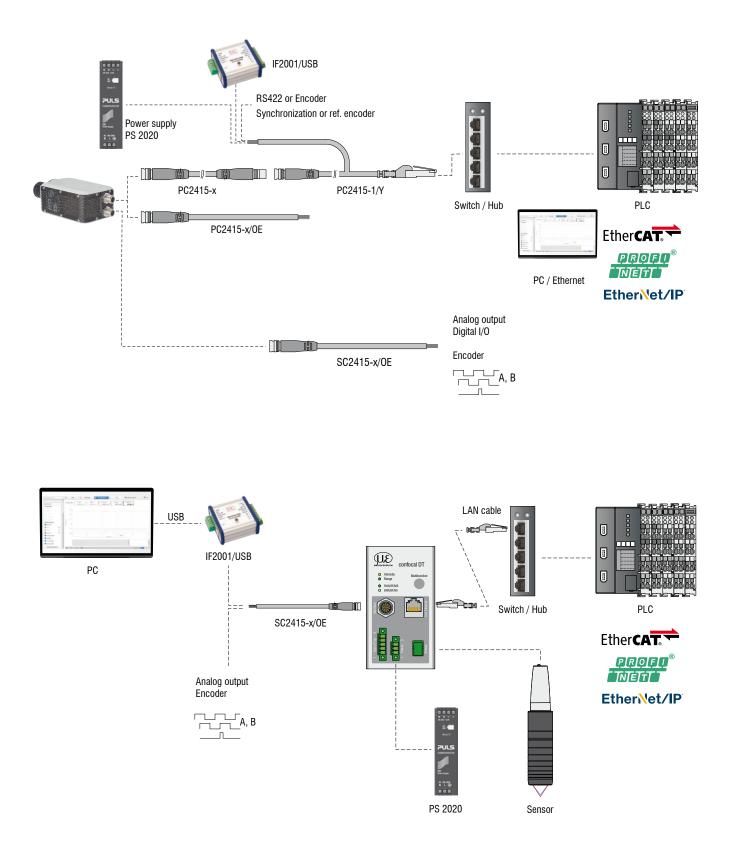
Shock (DIN EN 60068-2-27)

Vibration (DIN EN 60068-2-6)

Protection class (DIN EN 60529)

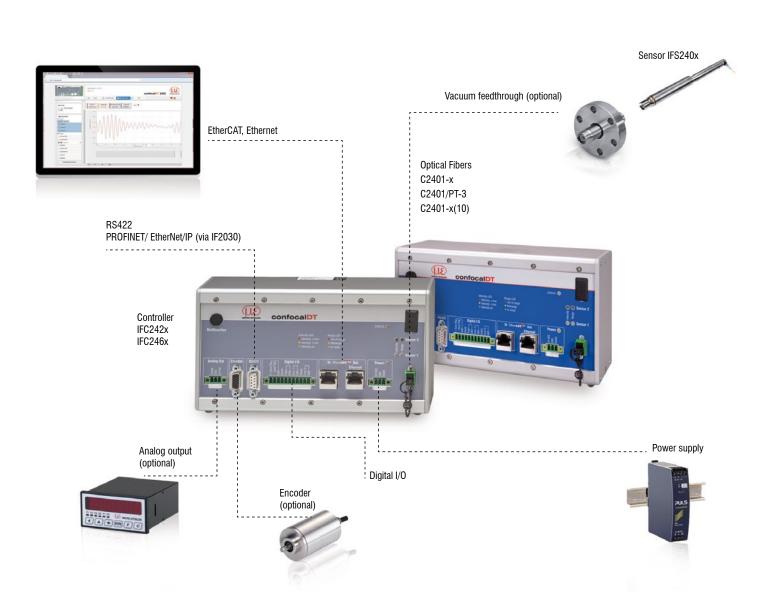
Measuring range

Start of measuring range


IP65 (front)

Aluminum housing, glass lenses

approx. 730 g


Cable concepts for every application

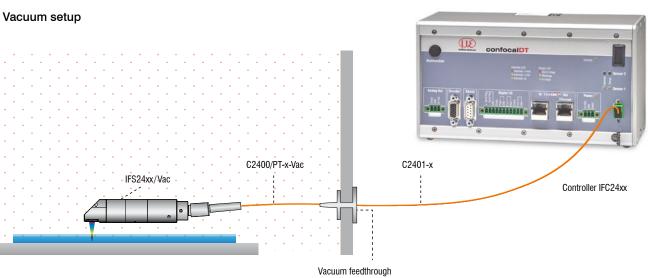
The connection options are diverse and can be adapted to your plant or machine concept.

The confocalDT system consists of:

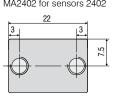
- Sensor IFS240x
- Controller IFC24xx
- Fiber optic cable C24xx

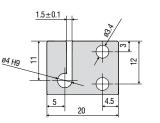
Customer-specific modifications confocalDT

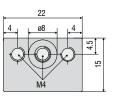
Customer-specific modifications


Application examples are often found where the standard versions of the sensors and the controllers are performing at their limits. To facilitate such special tasks, it is possible to customize the sensor design and to adjust the controller accordingly. Common requests for modifications include changes in design, mounting options, customized cable lengths and modified measuring ranges.

Possible modifications

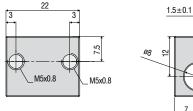

- Sensors with connector
- Cable length
- Vacuum suitability up to UHV
- Specific lengths
- Customer-specific mounting options
- Optical filter for ambient light compensation
- Housing material
- Measuring range / Offset distance

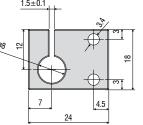


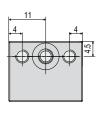

C2405.../Vac (KF or CF flange) C2402.../Vac (KF flange)

Accessories Mounting adapter

Accessories: mounting adapter MA2402 for sensors 2402

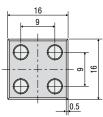


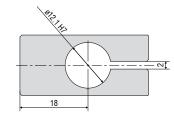


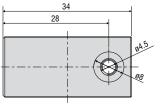


Accessories: mounting adapter

MA2403 for sensors 2403

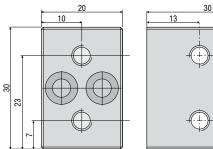


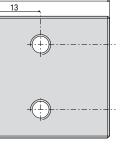


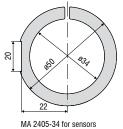


Accessories: mounting adapter

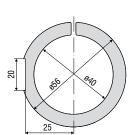
MA2404-12 for sensors IFS2404-2 / IFS2404/90-2 / IFS2407-0,1

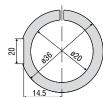




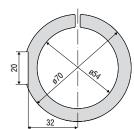


Accessories: mounting adapter MA2400 for sensors IFS2405 / IFS2406 / IFS2407 (consisting of a mounting block and a mounting ring)

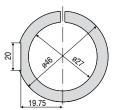

Mounting block



MA 2405-34 for sensors IFS2405-3 IFD2415-3

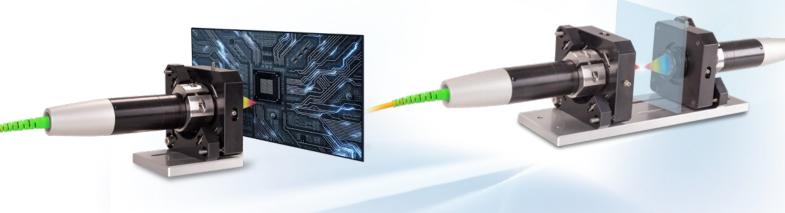


MA 2405-40 for sensors IFS 2405-6



Mounting ring

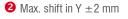
MA 2406-20 for sensors IFS2406-2,5 IFS2406/90-2,5

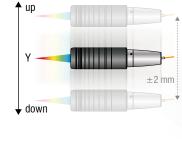

MA 2405-54 for sensors IFS2405-10 IFS2407-3 IFD2415-10

MA 2400-27 for sensors IFS2405-0,3 / -1 IFS2406-3 / -10 IFD2411-x IFD2410-x IFD2415-1 20 . 665 36.5

MA 2405-62 for sensors IFS2405-28 / -30

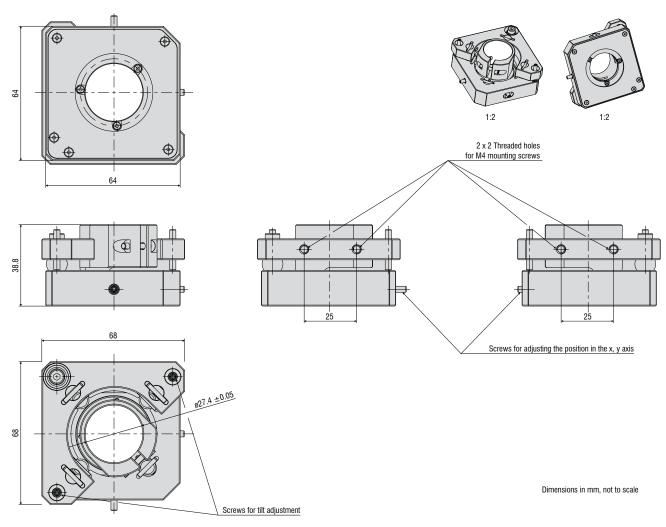
Accessories Adjustable mounting adapters



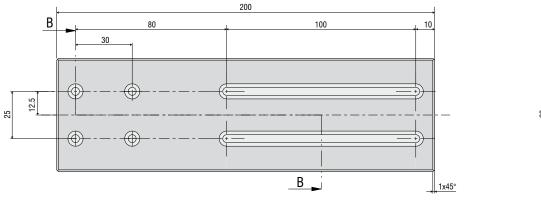

JMA-xx mounting adapter for distance measurements

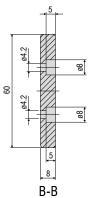

JMA-Thickness mounting adapter for two-sided thickness measurements

The adjustable JMA mounting adapter simplifies the alignment and fine adjustment of confocal sensors. The sensors are integrated and aligned directly in the machine together with the adapter. This corrects, e.g, minor deviations caused by mounting and compensates for tilted measuring objects. With two-sided thickness measurements, the JMA-Thickness mounting adapter supports the fine alignment of the two measuring points.



Dimensions


Adjustable mounting adapter JMA



Holder for smaller sensor diameters

Sensor holder for JMA-08 Sensor holder for JMA-10 Sensor holder for JMA-12 Sensor holder for JMA-20 A-A 19.8-0.5 A-A А 19.8-0.5 19.8-0.5 А А 19.8-8.5 A-A 1 _1 1 1 ø20.05^{+0.06} ø27.0.3 10.05 12.05 **38.05** [⊥] a27. 027 M4 A-A M4 M4 A А А for M4x6 grub screw, 0441074 for M4x6 grub screw, for M4x6 grub screw, 0441041 0441041

Mounting plate JMP for JMA-Thickness

Accessories Mounting adapter for individual sensors

Manual adjustment mechanism for easy and fast adjustment

Optimal sensor alignment for best possible measurement results

Ideally suitable for machine integration

Particularly for high resolution sensors with a small tilt angle, perpendicular installation is required. The JMA-xx mounting adapter enables fine alignment of the sensor to the target via the simple adjustment mechanism. This makes it easy to compensate for minor mounting deviations or tilted measuring objects.

= 1 JMA-xx

I sensor holder for smaller diameters (not with JMA-27)

dilitin

- 1 hexagon screwdriver for positioning
- Assembly instructions

Scope of supply

Model		JMA-08	JMA-12	JMA-20	JMA-27
Tible	Х		±4° (continuou	isly adjustable)	
Tilting range	Υ		±4° (continuou	usly adjustable)	
Chiffing range	Х		±2 mm (continue	ously adjustable)	
Shifting range	Υ		±2 mm (continue	ously adjustable)	
Shock (DIN EN 60068-2-27)		15g / 6 ms in XYZ axis, 1000 shocks each			
Vibration (DIN EN 60068-2-6)		2g / 20 500 Hz in XYZ axis, 10 cycles each			
Adjustment mechanism		Screw setting mechanism via M3x0.25 screw with hexagon socket 1.5			
Installation		2x 2 mounting holes for M4x1			
Sensor mounting		Radial clamping for ø 8 mm	Radial clamping for ø 12 mm	Radial clamping for ø 20 mm	Radial clamping for ø 27 mm
Compatibility		confocalDT: IFS2403 series	confocalDT: IFS2404-2 IFS2407-0,1 IFS2407-0,8	confocalDT: IFS2406-2,5/VAC interferoMETER: IMP-TH70	confocalDT: IFS2405-0,3 IFS2405-1 IFS2406-3 IFS2406-10 IFD2411-x

Application examples:

Alignment

Subsequent correction of the mounting position

Compensates for incorrect target position

Positioning

Shifting the sensor to target area

Accessories Mounting adapter for two-sided thickness measurements

dululul

Optimal alignment of the optical axes enables high precision in two-sided thickness measurements

Pre-assembled for easy installation and fast commissioning

Ideally suitable for machine integration

For two-sided thickness measurements, the JMA-Thickness mounting adapter supports the alignment of the measuring points to one another. This means that the measuring points are arranged absolutely congruent to each other so that the sensors are positioned exactly on an optical axis. This prevents measurements at an offset and a reliable measurement result is achieved with the highest possible precision.

When delivered, the two mounting adapters are pre-mounted on a mounting plate and aligned with one another. This simplifies installation and the measuring system can be put into operation more quickly. After installation into the machine, the plate can be removed, if necessary.


Scope of supply

- = 2 JMA-xx
- I JMP mounting plate
- I hexagon screwdriver 1.5 mm
- 1 Allen wrench 2.5 mm
- 1 Allen wrench 3.0 mm
- 1 Assembly instructions
- 2 optional reducing sleeves

(depending on the package and the corresponding sensor)

Model	JMA-Thickness	-08	-12	-20	-27
Shock (DIN	EN 60068-2-27)		15g / 6 ms in XYZ axi	s, 1000 shocks each	
Vibration (D	IN EN 60068-2-6)		2g / 20 500 Hz in XY	Z axis, 10 cycles each	
Adjustment	mechanism	S	Crew setting mechanism via M3x0	.25 screw with hexagon socket 1.5	5
Sensor mou	unting	Radial clamping for ø 8 mm	Radial clamping for ø 12 mm	Radial clamping for ø 20 mm	Radial clamping for ø 27 mm
Compatibilit	ty	confocalDT: IFS2403 series	confocalDT: IFS2404-2 IFS2407-0,1	confocalDT: IFS2406-2,5/VAC interferoMETER: IMP-TH70	confocalDT: IFS2405-0,3 IFS2405-1 IFS2406-3 IFS2406-10 IFD2411-x

More precision with two-sided thickness measurements

Measurement error with tilted target

With JMA-Thickness: Measures exactly at the opposite position

Without JMA-Thickness: Incorrect thickness measurement with vibrations

With JMA-Thickness: Sensors are on one optical axis – provides stability even with vibrating objects

Without JMA-Thickness: Sensors positioned incorrectly – no thickness measurement possible

With JMA-Thickness: Optimal positioning support – object visible for both sensors

Accessories Cables and connectors

Software

IFD24xx-Tool Software demo tool included

Light source accessories

IFL2422/LED	Lamp module for IFC2422 and IFC2466
IFL24x1/LED	Lamp module for IFC2421 and IFC2465

Optical fiber extension for sensors

CE2402 cable with 2x E2000/APC connectorsCE2402-xExtension for optical fiber (3 m, 10 m, 13 m, 30 m, 50 m)CE2402/PT3-xOptical fiber extension with protection tube for mechanical stress

CE2402/P13-X	Oplical liber extension with protection tube for mechanical stres
	(3 m, 10 m, customer-specific length up to 50 m)

Optical fibers for IFS2404/IFS2404-2 and IFS2404/90-2 sensors

C2404-x	Optical fiber with FC/APC and E2000/APC connectors
	Fiber core diameter 20 μ m (2 m)

Optical fibers for IFS2405/IFS2406/2407-0,1/ IFS2407-3/IFD2411-x sensors

C2401 cable with FC/APC and E2000/APC connectors

C2401-x	Optical fiber (3 m, 5 m, 10 m, customer-specific length up to 50 m)
C2401/PT3-x	Optical fiber with protection tube for mechanical stress
	(3 m, 5 m, 10 m, customer-specific length up to 50 m)
C2401-x(01)	Optical fiber core diameter 26 μ m (3 m, 5 m, 15 m)
C2401-x(10)	Drag-chain suitable optical fiber (3 m, 5 m, 10 m)

C2400 cable with 2x FC/APC connectors

C2400-x	Optical fiber (3 m, 5 m, 10 m, customer-specific length up to 50 m)
C2400/PT-x	Optical fiber with protection tube for mechanical stress
	(3 m, 5 m, 10 m, customer-specific length up to 50 m)
C2400/PT-x-Vac	Optical fiber with protection tube suitable for use in vacuum
	(3 m, 5 m, 10 m, customer-specific length up to 50 m)

Cables for IFD2410 /2415 sensors

PC2415-x	Supply/interface cable, drag-chain suitable,
	3 m, 6 m, 9 m, 15 m
PC2415-x/OE	Supply/interface cable open ends, drag-chain suitable,
	3 m, 6 m, 9 m, 15 m
PC2415-1/Y	Supply/interface cable Y, open ends and RJ45 plug,
	drag-chain suitable, 1 m
SC2415-x/OE	Multifunction cable, open ends, drag-chain suitable,
	3 m, 6 m, 9 m, 15 m

Cables for IFD2411 sensors

SC2415-x/OE	Multifunction cable, open ends, drag-chain suitable, 3 m, 6 m, 9 m, 15 m
C2401-x	Optical fiber (3 m, 5 m, 10 m, customer-specific length up to 50 m)

Optical fiber C2401-x

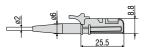
Optical fiber with coating C2401/PT3-x

Drag-chain suitable optical fiber C2401-x(10)

Optical fibers for IFS2407/90-0,3 sensors

C2407-x Optical fiber with DIN connector and E2000/APC (2 m, 5 m)

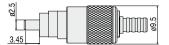
Vacuum feedthrough

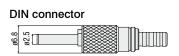

C2402/Vac/KF16	Vacuum feedthrough with optical fiber, 1 channel, vacuum side FC/APC
	non-vacuum side E2000/APC, clamping flange KF 16
C2405/Vac/1/KF16	Vacuum feedthrough on both sides FC/APC socket, 1 channel,
	clamping flange type KF 16
C2405/Vac/1/CF16	Vacuum feedthrough on both sides FC/APC socket, 1 channel,
	flange type CF 16
C2405/Vac/6/CF63	Vacuum feedthrough FC/APC socket, 6 channels,
	flange type CF 63

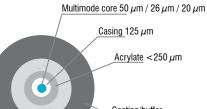
Other accessories

SC2471-x/USB/IND	Connector cable IFC2461/71, 3 m, 10 m, 20 m
SC2471-x/IF2008	Connector cable IFC2461/71-IF2008, 3 m, 10 m, 20 m
PS2020	Power supply 24V / 2.5A
EC2471-3/OE	Encoder cable, 3m
IF2030/PNET	Interface module for PROFINET connection
IF2030/ENETIP	Interface module for EtherNet/IP connection

Optical fiber


Temperature range : -50 °C to 90 °C Bending radius: 30/40 mm




E2000/APC standard connector

FC/APC standard connector

Coating/buffer PVC: polyvinyl chloride

Strain relief PVDF: polyvinylidene fluoride

Accessories Interface modules

Module	IFD2410	IFD2411	IFD2415	IFC242x	IFC246x
IF2001/USB Single-channel RS422/USB converter cable	~	~	~	~	~
IF2004/USB RS422/USB converter to convert up to 4 digital signals to USB	0	~	0	~	~
IF2008/ETH Interface module for Ethernet connection for up to 8 sensors	\otimes	\otimes	\otimes	~	~
IF2008PCIE Interface card for multiple sensor signals; analog and digital interfaces	0	~	0	~	~
IF2035/PNET Interface module for Industrial Ethernet connection (PROFINET)	\otimes	0	\otimes	~	~
IF2035/ENETIP Interface module for Industrial Ethernet connection (EtherNet/IP)	0	0	0	~	~

IF2001/USB converter RS422 to USB

The RS422/USB converter converts the digital signals of a confocal controller into a USB data packet. The sensor and the converter are connected via the RS422 interface of the converter. Data output is done via USB interface. The converter loops through further signals and functions such as laser on/off, switch signals and function output. The connected controllers and the converter can be programmed through software.

Special features

- Robust aluminum housing
- Easy sensor connection via screw terminals (plug and play)
- Conversion from RS422 to USB
- Supports baud rates from 9.6 kBaud to 12 MBaud

IF2004/USB: 4-channel converter from RS422 to USB

The RS422/USB converter is used for transforming digital signals of up to four confocal controllers into USB data signals. The converter has four trigger inputs and a trigger output for connecting additional converters. Data is output via an USB interface. The connected controllers and the converter can be programmed through software. The COM interfaces can be used individually and can be switched.

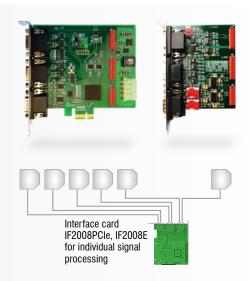
Special features

- 4x digital signals via RS422
- 4x trigger inputs, 1x trigger output
- Synchronous data acquisition
- Data output via USB

IF2008/ETH IF2008/ETH Interface module for Ethernet connection with up to 8 sensors

The IF2008/ETH integrates up to eight sensors and/or encoders with an RS422 interface into an Ethernet network. Four programmable switching in-/outputs (TTL and HTL logic) are available.

10 indicator LEDs directly on the module show both the channel and the device status. In addition, acquisition and output of data via Ethernet is in addition performed at high speeds up to 200 kHz. Parameter setting of the interface module can be easily done via the web interface.


IF2008PCIe/IF2008E

Interface card for synchronous data acquisition

Absolute synchronous data acquisition is a decisive factor for the deflection or straightness measurement using several controllers. The IF2008PCIe interface card is designed for installation in PCs and enables the synchronous acquisition of four digital sensor signals and two encoders. The data is stored in a FIFO memory in order to enable resource-saving processing in blocks in the PC. The IF2008E expansion board enables to detect in addition two digital controller signals, two analog controller signals and eight I/O signals.

Special features

- IF2008PCIe Basic printed circuit board: 4 digital signals and 2 encoders
- IF2008E Expansion board: 2x digital signals, 2x analog signals and 8x I/O signals

IF2035

Interface module for Industrial Ethernet connection

The IF2035 interface modules are designed for easy connection of Micro-Epsilon sensors to Ethernet-based fieldbuses. The IF2035 is compatible with sensors that output data via an RS422 or RS485 interface and supports the common Industrial Ethernet protocols EtherCAT, PROFINET and EtherNet/IP.

These modules operate on the sensor side with up to 4 MBd and have two network connections for different network topologies. In addition, the IF2035-EtherCAT offers a 4-fold oversampling function, which enables faster measurements than the bus cycle allows, if required. Installation in control cabinets is via a DIN rail.

Sensors and Systems from Micro-Epsilon

Sensors and systems for displacement, distance and position

Optical micrometers and fiber optics, measuring and test amplifiers

Sensors and measurement devices for non-contact temperature measurement

Color recognition sensors, LED analyzers and inline color spectrometers

Measuring and inspection systems for metal strips, plastics and rubber

3D measurement technology for dimensional testing and surface inspection

MICRO-EPSILON Headquarters Koenigbacher Str. 15 · 94496 Ortenburg / Germany Tel. +49 (0) 8542 / 168-0 · Fax +49 (0) 8542 / 168-90 info@micro-epsilon.com · www.micro-epsilon.com